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ABSTRACT 

With t h e  inc lus ion  of one unpublished spectrum, t h e  l i t e r a t u r e  reveals 
t h a t  t h e  absorp t ion  spectrum of t h e  s o l i d  oxygen molecule h a s  been thoroughly 
s tudied  from v i s i b l e  t o  millimeter wavelengths. Only t w o  l i n e s  appear i n  t h e  
s o l i d  t h a t  do not  a l s o  appear  i n  t h e  gas  o r  l i q u i d .  A similar r e s u l t  is 
implied f o r  t h e  s o l i d  n i t rogen  molecule because i t  also is homonuclear. 
observed i n f r a r e d  absorp t ion  l i n e s  r e s u l t  from la t t ice  modes of  t h e  
of t h e  s o l i d ,  and disappear  a t  t h e  warmer temperatures  of t h e  
l i q u i d  phases. 
while  s t r o n g  s c a t t e r i n g  is. 
absorpt ion is t h e  p r i n c i p a l  n a t c r a l  contamination problem f o r  cooled i n f r a r e d  
te lescopes  i n  low Earth o r b i t .  

The 
phase a 

13, y ,  and 

It is concluded that s c a t t e r i n g  r a t h e r  than 
They are not  observed from p o l y c r y s t a l l i n e  forms of 0 2 ,  

INTRODUCTION 

I t  is w e l l  known t h a t  gases  and l 'qu ids  composed of t h e  homonuclear 
molecules 0, and N, have no s t r o n g  i n f r a r e d  absorp t ion  s p e c t r a  because t h e  
moleciiles do not possess an electric d i p o l e  moment. 
i n a t i o n  s t u d i e s  f o r  t h e  S h u t t l e  Inf ra r -d  Telescope F a c i l i t y  (SXRTF), a l i q u i d  
helium cooled space te lescope ,  t h e  ques t ion  e rose  as t o  what t h e  absorp t ion  
spectrum of t h e  s o l i d  s ta te  of thes,  molecules would be, and p a r t i c u l a r l y  
what labora tory  measurements of t h e  s o l i d  had been made i n  t h e  i n f r a r e d .  
no te  is t h e  result  cf  a l i t e r a t u r e  search  t o  answer those quest ions.  

However, dur ing  contam- 

This  

The SIRTF is a l a r g e  (about one meter diameter) l i q u i d  helium cooled 
te lescope  t h a t  w i l l  be flown on t h e  Space S h u t t l e  a t  a l t i t u d e s  near  300 km. 
The te lescope s u r f a c e s  w i l l  be cooled t o  between 5 and 20 K, where O2 
and N2 condense as s o l i d s .  
n a t u r a l  atmosphere a t  300 km is p r i n c i p a l l y  atomic oxygen, with 5-15X 
mJlecular n i t rogen  t h e  next most common c o n s t i t u e n t  (CIRA 1972). All 
o t h e r  n a t u r a l  const : twnts  make up <3%. Although t h e  o r b i t a l  v e l o c i t y  
a t  300 km gives  t h e  n a t u r a l  atmosphere a very high k i n e t i c  temperature 
(100,000 K) r e l a t i v e  t o  the  S h u t t l e ,  equi l ibr ium arguments i n d i c a t e  t h a t  
the  temperature of the  ambient atmosphere which moves along with t h e  space- 
c r a f t  w i l l  be nearzr  'ill0 K. After  s e v e r a l  c o l l i s i o n s  wi th in  t h e  cold 
te lescope w a l l s  t h e  arlijient oxygen atoms w i l l  have cooled s u f f i c i e n t l y  
t o  "s t ick"  t o  the  ~ J W  t2mperature sur faces .  
energy of the  molecule, i t  is expected t h a t  once oxygen atoms have condensed 

Because of  t h e  photodissoc ia t ion  of 02, t h e  

Because of t h e  high binding 



on a s u r f a c e  they w i l l  quickly migrate  t o  form molecules,  and at t h e s e  
temperatures then form some type of s o l i d  s ta te  l a t t i c e .  
a per iod of weeks, enough material could condense on t h e  o p t i c a l  s u r f a c e s  t o  
s e r i o u s l y  degrade o r  contaminate t h e  t ransmission of t h e  te lescope.  The 
s p e c t r a l  region i n  which t h e  SIRTF t e lescope  is expected to o p e r a t e  extends 
from 1 to  700 u m ,  and ambient absorp t ion  occurr ing  i n  t h i s  region is of 
concern. 

Conceivably, over  

A review of molecular terminology is f i r s t  appropr ia te .  C l a s s i c a l  
electrodynamics p r e d i c t s  that r a d i a t i o n  w i l l  be  emit ted o r  absorbed by any 
atomic system t h a t  undergoes a change of i t s  d i p o l e  moment. 
Herzberg (1945), i n  f r e e  unsymmetric molecules (such as CO o r  HCN) t h e  normal 
(or  Eigen) f requencies  of v i b r a t i o n  always produce a change of t h e  molecule 's  
electric d i p o l e  moment, hence always result in r a d i a t i o n .  
c a l l e d  " inf ra red  ac t ive"  and produce s t r o n g  i n f r a r e d  absorpt ion.  
p a r t i c u l a r  v i b r a t i o n s  of syrcmetric polyatomic molecules (CO f o r  example) 
do not  r e s u l t  i n  a change of an e x i s t i n g  d i p o l e  moment and 2; not  a f f e c t  
rad ia t ion .  These symmetric v i b r a t i o n s  are c a l l e d  " inf ra red  inact ive."  Often,  
a symnetric molecule w i l l  have both i n f r a r e d  active and i n a c t i v e  f requencies  
assoc ia ted  with its d i p o l e  moment. 

According t o  

Such motions are 
Some 

A f r e e  diatomic homonuclear molecule (H2, M2, 02) has two  i d e n t i c a l  
nuc le i  and such a high degree of symmetry t h a t  i t  l a c k s  an e l e c t r i c  d i p o l e  
moment. Consequently, t h e  gaseous and l i q u i d  states of homonuclear molecules 
have no permit ted i n f r a r e d  s ? e c t r a  a t  a l l  (Herzberg, 1950). However, t h e s e  
molecules may have magnetic d i p o l e  and/or e l e c t r i c  quadrupole moments. 
Changes of those moments do produce r a d i a t i o n ,  but  a t  e f f i c i e n c y  l e v e l s  
about (magnetic d i p o l e )  and 10'' (electric quadrupole),  t h a t  of an 
electric d i p c l e .  
from long pa ths  through a low pressure  gas. 
and high pressure  states of t h e  gas,  intermolecular  f o r c e s  may a l s o  induce 
a temporary e l e c t r i c  d i p o l e  moment. However, t h e  in te rmolecular  f o r c e s  are 
r a t h e r  weak and c o l l i s i o n s  have no l a r g e  scale o r d e r ,  so t h e  induced bands 
are a l s o  weak. 

Hence, magnetic d i p o l e  r a d i a t i o n  is most o f t e n  observed 
During c o l l i s i o n s  i n  t h e  l i q u i d  

I n  t h e  s o l i d  s ta te  (Hadni, 1967), intermolecular  f o r c e s  become r e g u l a r  
throughout l a r g e  volumes and thus  more e f f e c t i v e  than in t h e  gas  or l i q u i d .  
I n  a d d i t i o n ,  o t h e r  e f f e c t s  such as r o t a t i o n a l  hindrance and e l e c t r o n  exchange 
r e s u l t  from t h e  r e g u l a r i t y  and spacing of t h e  s o l i d .  
which does not  e x i s t  i n  t h e  o t h e r  phys ica l  s tates,  may occur i n  t h e  s o l i d .  
I n  such case,  o s c i l l a t o r y  modes of t h e  c r y s t a l  l a t t i ce  may be superimposed 
on t h e  normal vibrat!on modes of t h e  molecule. Such la t t ice  modes are 
represented by phonoris and magnons, somewhat a b s t r a c t  e n t i t i e s  der ived from 
the o s c i l l a t o r y  energy l e v e l s  of t h e  la t t i ce .  They c a r r y  away t h e  energy, 
momentum, and p a r i t y  necessary t o  preserve those same conserva t ion  laws i n  
t h e  o v e r a l l  ( l a t t i c e  + molecule) t r a n s i t i o n .  Thus energy l e v e l s  from which 
t r a n s i t i o n s  are forbidden i n  t h e  gas  may become a c t i v e  i n  t h e  solid through 
t h e  assistance of a phonon o r  magnon. 
resonance a b s c i p t i o n s  can a l s o  occur.  These are genera l ly  found i n  t h e  f a r  
i n f r a r e d  because t h e  energy involved is small .  

So a d i p o l e  moment, 

Fur ther ,  pure phonon o r  magnon 
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The thorough review by Wachtel and Wheeler (1971) has  been used i n  t h e  
following d e s c r i p t i o n  of t h e  f r e e  molecule and s o l i d  states of N, and 02. 
Nitrogen is a homonuclear diatomic molecule wi th  no unpaired e l e c t r o n s ;  hence, 
i t  has  n e i t h e r  an  e lectr ic  nor  a magnetic d i p o l e  moment. Its ground state is  
'1. 
2p s h e l l  of each of i t s  atoms) whose o r b i t a l  angular  momenta cancel  i n  t h e  
ground state, but  whose s p i n s  add. This r e s u l t s  i n  t h e  molecule having a 
magnetic d i p o l e  moment which g ives  it a t r i p l e t  ground state ( 3 C )  and some 
i n t e r e s t i n g  forbidden t r a n s i t i o n s .  

Although a l s o  homonuclear, 0, h a s  two unpaired e l e c t r o n s  (one from t h e  

I:n t h e  s o l i d  state 0, and N, form molecular c r y s t a l s ,  t h a t  is, c r y s t a l s  
Such c r y s t a l s  have temperature- i n  which t h e  molecule r e t a i n s  its i d e n t i t y .  

dependent phases,  each wi th  a d i f f e r e n t  crystal s t r u c t u r e .  0, h a s  t h r e e  
s o l i d  phases. The a phase (T < 23.8 K) is monoclinic, of space group C2h3, 
wi th  two molecules per  u n i t  cell .  The 6 phase (23.8 K I T < 43.76 K) is  
rhombohedral, D dS, wi th  one molecule per  u n i t  cel l .  The y phase of 0 
(43.76 K 5 T < $4.39 K = mel t tng  p o i n t )  h a s  e i g h t  molecules per  u n i t  celf, 
space group oh3, and a high degree of r o t a t i o n a l  d i s o r d e r  p r i o r  to  t r a n s i t i o n  
t o  t h e  l i q u i d .  N, has  two s o l i d  phases descr ibed by St .  Louis and Schnepp 
(1969). The a phase (T < 35.6 K) is face-centered cubic ,  of space group 
P2 3(T4), wi th  f o u r  molecules per  u n i t  cel l .  The 6 phase of N 2  
(34.6 K 5 T < 63.1 K = mel t ing  poin t )  is a hexagonal close-packed s t r u c t u r e  
DGh, with two molecules p e r  u n i t  ce l l  and some d i s o r d e r  of t h e  molecular 
axes r e l a t i v e  t o  the  c r y s t a l  a x i s .  

SOLID 0, AND N,: LITERATURE SEARCH, REVIEW, AND CONCLUSION 

From t h e  p o i n t  of view of o p t i c a l  or i n f r a r e d  contamination it  is p a r t i c u -  
l a r l y  important t h a t  t h e  observed absorp t ion  spectrum of s o l i d  0, be 
c a r e f u l l y  s t u d i e d  because i t  is very d i f f i c u l t  t o  p r e d i c t  which t r a n s i t i o n s  
w i l l  become active i n  t h e  s o l i d ,  even when molecular and crystal s t r u c t u r e s  
are q u i t e  w e l l  known. Subsequently, t h e o r e t i c a l  c o n s i d e r a t i o n s  may be used 
t o  e v a l u a t e  what observa t iona l  gaps e x i s t .  

Two l i t e r a t u r e  search  computer programs were used dur ing  June of 1976 
and updated i n  September 1977. 
by Lockheed Missiles and Space Company, was u t i l i z e d  t o  search  t h e  genera l  
l i t e r a t u r e  by indexing Chemical Abs t rac ts ,  Science Abs t rac ts ,  and t h e  
National Technical  Information Service.  
t h e  NASA l i b r a r y  system, w a s  used t o  search  NASA's i n t e r n a l  r e p o r t  base by 
indexing I n t e r n a t i o n a l  Aerospace Abs t rac ts  and "STAR" (Science and Technology 
Aerospace Reports).  Of  many search  headings employed, t h e  most e f f e c t i v e  
was i n t e r s e c t i o n  of the  two sets  "so l id  molecular oxygen" (or  n i t rogen)  and 
" inf ra red  absorpt ion spectra ."  C r i t i c a l  reviews of t h e  emission and absorp- 
t i o n  of O2 by Krupenie (19721, and of N 2  by Lofthus and Krupenie (1977) were 
very h e l p f u l  with t h e  gas  and l i q u i d  states. I n  a d d i t i o n ,  t h e  Berkeley 
Newsletter of t h e  Univers i ty  of C a l i f o r n i a  Physics and Astronomy Departments 
(ed i ted  by S. P.  Davis and J. G .  P h i l l i p s )  was searched f o r  the  per iod from 
1969 through mid-1977. 

"DIALOGUE ,I1 a commercial program developed 

"RECON," a program developed w i t h i n  
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Because a n u l l  r e s u l t  is seldom repor t ed ,  i t  was f o r t u n a t e  f o r  this 
search  t h a t  s o l i d  oxygen has  some s u f f i c i e n t i y  unusual forbidden t r a n s i t i o n s  
t o  have generated a moderate i n f r a r e d  l i t e r a t u r e .  In  p a r t i c u l a r ,  w e  r e f e r  
t o  two n u l l  s p e c t r a l  searches  repor ted  only  i n  t h e  footnotes  and b ib l iogra-  
ph ies  of  e t h e r  papers.  One, by P. N. Noble (1965), covered t h e  range from 
6.7 t o  40 >m i n  sea rch  of an 0, complex and w a s  reported i n  t h e  paper by 
Cairns  and Pimentel  (1965) as t h e i r  r e fe rence  17. According t o  them, Noble 
deposi ted 26 m i l l i m o l e s  (about 112 mm) of oxygen a t  20 K without observing 
any absorp t ion .  

The o t h e r  n u l l  search ,  by Anderson and Lero i  (1965), covered t h e  range 

According to  a personal  
from 25  t o  400 um i n  sea rch  of t r a n s l a t i o n a l  l a t t i c e  modes i n  aO,, and w a s  
mentioned i n  t h e  paper by Laufer and Lero i  (1971). 
communication from Anderson and Leroi, they used an  RiIC FS520 i n t e r f e romete r  
and d i d  not  obsa-mre any absorp t ion  from a depos i t  approximately 0.1 t o  0.5 mm 
th ick .  They n o t e  t h a t  t h e  l a r g e  (-90%) s c a t t e r i n g  loss in t h e  depos i t  
produced noisy  in te r fe rograms where "weak f e a t u r e s  could e a s i l y  have been 
missed." 

The p r i n c i p a l  r e s u l t s  of t h i s  l i t e r a t u r e  search  are t h e  observed 
absorp t ion  s p e c t r a  of s o l i d  0, and N, shown i n  f i g u r e s  1 and 2. 
shows t h a t  wi th  t h e  except ion of a small gap from 1.25 t o  3 Itm, t h e  spectrum 
of s o l i d  O2 has  been completely s tud ied  from 0.33 t o  2500 um. 
s o l i d  N 2  ( f i g .  2 )  is not  as camplete. 
f e a t u r e s  were observed by the  au thors  c i t e d .  

F igure  1 

The s tudy  of  
As te r i sks  (*) i n d i c a t e  t h a t  no s p e c t r a l  

Both molecules e x h i b i t  t h e i r  homonuclear n a t u r e  i n  the  s o l i d  i n  the  same 
manner as they do i n  t h e  gas  and l i q u i d ,  t h a t  is, by a d e a r t h  of s t r o n g  
t r a n s i t i o n s .  Apparently the  symmetric na tu re  of t h e  molecule prevents  s t rong  
i n t e r a c t i o n  wi th  the  l a t t i ce  because only  two t r a n s i t i o n s  occur  i n  t h e  s o l i d  
t h a t  do not  a l s o  occur i n  t h e  gas  o r  l i q u i d ;  and those  t r a n s i t i o n s  r e s u l t  
from pure l a t t i c e  modes. 
However, t h e r e  are two frequency s h i f t s  (of 75 and 150 cm", too  small t o  
appear i n  t h e  f i g u r e )  of some of t h e  so-called "double" t r a n s i t i o n s  i n  t h e  
v i s i b l e  which have been a s soc ia t ed  wi th  a magnon resonance of t h e  
by Litvinenko e t  ai!. (1968) and by Wachrel and Wheeler (1971). Such s h i f t s  
i n d i c a t e  t h a t  t h e r e  i s  some i n t e r a c t i o n  of l a t t i c e  modes with the  magnetic 
d i p o l e  of 0,. Lacking a magnetic d ipo le  moment, NI does not have even t h i s  
i n t e r a c t i o n .  

(This is more c l e a r l y  shown i n  f i g .  3 f o r  O , . )  

aOp l a t t i c e  

The square  b racke t s  i n  f i g u r e s  1 and 2 d e l i n e a t e  t h e  s p e c t r a l  region 
s tudied  by the  au tho r s  ind ica ted  d i r e c t l y  below each bracket .  
each bracket  is t h e  range of s o l i d  th ickness  s t u d i e d ,  wi th  except ion  of  t h e  
observa t ions  of Noble (1965), and Anderson and Lero i  (1965), where the  numbers 
g ive  in s t ead  an estimate of t h e  t o t a l  t h i ckness  of material depos i ted .  I n  
a l l  observa t ions ,  t he  repor ted  temperature was a t  least a f e w  degrees  below 
t h a t  of t h e  a-B phase t r a n s i t i o n .  Thus, a l l  au tho r s  presumed t h e i r  work 
t o  be done i n  the  a phase. 'Ihe word "annealed" i n  f i g u r e  1 means t h a t  a 
s p e c i a l  anneal ing process  was used to go from t h e  gas t o  the 

Di rec t ly  above 

a phase. 

4 



The 364 um (27.5 cm") magnon l int!  i n  f i g u r e  1 w a s  f i r s t  observed by 
Blocker, Kinch, and West (1969). I n  footnote  3 of t h e i r  paper they poin t  out  
t h a t  t h e  thick crystals and unusual annealing process required to  observe the 
line probably account f o r  i t  not  having been seen before .  
process  involved f i r s t  condensing a l a r g e  volume of pure gas  onto  a l i q u i d  
helium cooled window, and then r a i s i n g  t h e  sample temperature t o  50 K 
(y phase) and maintaining it  t h e r e  f o r  some t i m e  before  slowly cool ing  i t  
through t h e  y -* 8 and 8 + a phase t r a n s i t i o n s .  They a l s o  n J t e  t h a t  
unannealed gas sanrples deposi ted a t  4.2 K showed only an  exponent ia l  a t tenua-  
t i o n  t h a t  is characterdstie of stuttering by an amorphous powder of f i n e  
p a r t i c l e s .  
364-pm l i n e  gradual ly  disappeared as t h e  temperature increased t o  the  
t r a n s i t i o n  at  23.8 K. 
magnetic resonance mode of t h e  a phase l a t t i ce ,  t h a t  is t o  a k = 0 magnon. 
Wachtel and Wheeler (1970) cons t ruc ted  a phenomenological s p i n  Hamiltonian 
(based on t h e  known la t t ice  s t r u c t u r e  and t h e  assumption of i s o t r o p i c  
an t i fe r romagnet ic  e l e c t r o n  exchange) which predic ted  not  on ly  t h e  364-urn 
l i n e ,  but  a l s o  a weaker l i n e  a t  1560 ym (6.4 cm"). 
earlier work and extended t h e  observa t ions  t o  2500 pm i n  o r d e r  t o  measure 
the  i n t e n s i t y  r a t i o  of t h e  two l i n e s .  They also measured t h e  magnetic f i e l d  
dependence of t h e  l i n e s  t o  r e i n f o r c e  t h e i r  i d e n t i f i c a t i o n  as a magnon 
resonance. Wachtel and Wheeler (1971) thoroughly descr ibe  t h e  s t r u c t u r e  of 
t h e  s o l i d  molecule and how a magnon o r  phonon can interact w i t h  t h e  ground 
conf igura t ion  of t h e  f r e e  molecule t o  produce s h i f t s  o f  some of t h e  "double" 
t r a n s i t i o n s  i n  t h e  v i s i b l e  p a r t  of t h e  spectrum. 

The anneal ing 

By f u r t h e r  slow v a r i a t i o n  of  temperature,  they showed t h a t  t h e  
a -* t3 

They ascr ibed  t h e  source  of t h e  l i n e  t o  an a n t i f e r r o -  

They repeated t h e  

Those s h i f t s  were s t u d i e d  by Eremenko e t  a l .  (1965), Eremenko and 
i i t v i n e n k o  (1968), and by Litvinenko e t  a l .  (1968) i n  t h e  a and 8 phases 
of a pure 0, c r y s t a l ,  and a l s o  i n  a mixed c r y s t a l  c o n t a i n i n g  15% N2 and 
855 0,. They found t h a t ,  l i k e  t h e  364 pm .and 1560 pm l i n e s ,  s h i f t s  of t h e  
''double" t r a n s i t i o n s  gradual ly  reduced t o  zero as t h e  temperature increased 
toward t h e  a + 8 t r a n s i t i o n .  They f u r t h e r  observed t h a t  t h e  mgnon shifi8 
did not occur a t  a l l  i n  the mixed crystuZ. They concluded t h a t  t h e  15% N, 
impurity destroyed t h e  l a r g e  scale an t i fe r romagnet ic  o r d e r i n g  of molecular 
s p i n s  thought necessary f o r  t h e  a phase l a t t i ce .  Pavloshchuk and Shansky 
(1975) a l s o  observed s h i f t s  of t h e  1.06 ym and 1.26 pm I R  t r a n s i t i o n s  a s  
progress ive ly  more and more N2 was int roduced i n t o  a mixed crystal .  
descr ib t  i i x e d  c r y s t a l s  where concent ra t ions  var ied  from (93% 0, - 7% N 2 )  t o  
(20% 0, - 80% NP). The c a l c u l a t e d  and observed o s c i l l a t o r  s t r e n g t h s  of  t h e  
"double" t r a n s i t i o n s  (Tsai  and Robinson, 1969) a r e  of t h e  same magnitude as 
those of a magnetic d ipole .  English,  Venables, and Salahub (1974) have a l s o  
c a l c u l a t e d  t h e  c r y s t a l  s t r u c t u r e  and antiferromagnetism of t h e  a phase. 

They 

The 143 u m  (70 cm'l) and 204 pm (49 cm") phonon l i n e s  of aN2 ( f i g .  2 )  
were f i rs t  observed by Anderson and Leroi  (1966). They deposi ted t h e  gas 
d i r e c t l y  onto a l i q u i d  helium cooled window and observed a cons iderable  
amount of s c a t t e r i n g .  
successfu l .  Schnepp (1967) calci l la ted t h e  i n t e n s i t i e s  of t h e s e  l i n e s ,  which 
he considered io r e s u l t  from nonzero d i p o l e  d e r i v a t i v e s  of induced d i p o l e  
moments a s s o c i a t e d  wi th  t r a n s l a t i o n a l  displacements of subla t t ices  (phonon 
resonance),  Ron and Schnepp (1967) measured t h e i r  i n t e n s i t y  r a t i o .  

Attempts t o  remove t h e  s c a t t e r i n g  by anneal ing were not 
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St .  Louis and Schnepp (1969) remeasured t h e  l i n e s  as a func t ion  o f  temperature 
and found t h a t  they also disappeared a s  t h e  temperature increased  t o  t h e  
a -f $ phase t r a n s i t i o n  at 35 K. They f u r t h e r  observed t h a t  t h e  l i n e s  had 
gross ly  d i f f e r e n t  halfwidths  and t h a t  t h e i r  i n t e n s i t i e s  were weaker, by 
a f a c t o r  of about 5 ,  than c a l c u l a t e d .  They concluded t h a t  t h e  m d e l  used 
f o r  t h e  i n t e n s i t y  c a l c u l a t i o n s  was not  f u l l y  adequate. Wachtel (1972) has  
found some evidence of  two very weak l i n e s  3t 172 pm and 263 pm which s h e  
a t t r i b u t e s  t o  t h r e e f o l d  degenerate  k = 0 l i b r a t i o n a l  l a t t i ce  modes. Those 
l i n e s  are not included i n  f i g u r e  2 because they were n o t  repor ted  by t h e  
t h r e e  earlier observers  who s tudied  t h e  same s p e c t r a l  region. 

With regard t o  p o s s i b l e  i n f r a r e d  contamination of a cooled te lescope ,  
i t  is important to  note  t h a t  t h e  l i n e s  of both s o l i d  molecules r e s u l t  from 
resonance modes of onZy t h e  
aO, 
produce the  a phase. Also, t h e  magnon s h i f t s  d id  not  occur i n  t h e  mixed 
c r y s t a l .  
f a i l u r e  t o  anneal  prevents  t h e  magnon resonance from forming, o r  whether t h e  
s c a t t e r i n g  from t h e  many small c r y s t a l l i t e s  i n  t h e  unannealed form overpowers 
t h e  absorpt ion.  

a phase l a t t i ce ,  and t h a t  t h e  magnon l i n e s  of 
appear only a f t e r  a c a r e f u l  anneal ing process  has  been f Sowed t o  

I t  is not  clear 2rom t h i s  review of t h e  l i t e r a t u r e  whether t h e  

What is q u i t e  s i g n i f i c a n t  to t h e  contamination problem is t h e  "co l lec t ive"  
observat ion t h a t  thin f i l m  depos i t ion  of O2 a t  l i q u i d  helium temperatures  
produces a s t r o n g l y  s c a t t e r i n g  p o l y c r y s t a l l i n e  s o l i d  which shows no absorp- 
t i o n  f e a t u r e s  between 3 urn and 2500 um. Note t h a t  Anderson and Leroi  (1965) 
did n o t  anneal  and they f a i l e d  t o  observe t h e  strongest magnon l i n e  a t  364 um, 
while both they and Blocker e t  aZ. (1969) s p e c i f i c a l l y  mention t h e  s t r o n g  
s c a t t e r i n g .  The col l is ion-induced fundamental band a t  6.4 pm seen by Cairns  
and Pimentel  (1965) appears  on ly  i n  q u i t e  t h i c k  samples, s i n c e  Mantz e t  at .  
(1974) d i d  n o t  see it w i t h  th icknesses  below 0.04 mm. Thus, it is clear 
from t h i s  review t h a t  s c a t t e r i n g  r a t h e r  than absorpt ion by t h e  condensed 
n a t u r a l  atmosphere is t h e  p r i n c i p a l  contamination problem f o r  a cooled 
i n f r a r e d  space te lescope.  

COMPILATION OF GAS, LIQUID,  AND SOLID SPECTRA 

For t h e  purpose of comparison, t h e  s p e c t r a l  f e a t u r e s  of  t h e  gas  and 
l i q u i d  were a l s o  compiled. They are l i s t e d  toge ther  with those  of t h e  s o l i d  
i n  t a b l e s  1 and 2; however, no claim is made to  t h e  completeness of t h e i r  
re fe rence  list as it is f o r  t h e  s o l i d .  
(19721, and Lofthus and Krupenie (1977) c o n t a i n  much more complete l ists  f o r  
both gases  and l i q u i d s  than do t h e s e  t a b l e s .  

I n  p a r t i c u l a r ,  t h e  revicws hy Krupenie 

Figures  2 and 3 provide a graphic  comparison of t h e  s p e c t r a l  f e a t u r e s  of  
each molecule by phys ica l  s tare  
wavelength bands of oxygen's Schumann-Runge and Herzberg I and I1 systems 
have not  been shown i n  t h e  gas  phase of f i g u r e  3 because they are only small 
p a r t s  of l a r g e  u l t r a v i o l e t  systems and a r e  seldom seen i n  absorp t ion .  

It should be noted here  t h a t  t h e  v i s i b l e  

For 
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t h e  same reason,  t h r e e  weak v i s i b l e  bands of t h e  Rydberg system of n i t r o g e n  
(Ledbetter,  1972) have n o t  been shown i n  t h e  gas  phase of f i g u r e  2. 

Collision-induced absorp t ion  w a s  f i r s t  observed by Crawford, Welsh, and 
Locke (1949) i n  t h e  high pressure  gas and l i q u i d  phases of 0, and k p .  
showed t h a t  t h e  fundamental v i b r a t i o n a l  t r a n s i t i o n  arose from t r a n s i e n t  
d i p o l e  moments induced by intermolecular  f o r c e s  during c o l l i s i o n s  i n  t h e  high 
d e n s i t y  phases. C o l l i s i o n s  induce t h r e e  bands i n  N, ( f i g .  2 ) ,  but  on ly  t h e  
fundamental v i b r a t i o n  has been observed i n  t h e  s o l i d  (Smith e t  aZ., 1950). 
Both t h e  fundamental and its f i r s t  overtone have been seen i n  high p r e s s u r e  
gas (Shapiro and Gush, 1966). S p e c t r a l  f e a t u r e s  a t t r i b u t e d  t o  t h e  n i t r o g e n  
dimer [N2I2, a t r a n s i t o r y  complex made of two molecules weakly bound by 
Van d e r  Waals f o r c e s ,  have been observed superimposed on t h e  fundamental band 
i n  a low temperature,  long-path absorp t ion  ce l l  by Long, Henderson, and 
k i n g  (1973). Dianov-Klokov and Malkov (1973) see similar f e a t u r e s  i n  both a 
long-path ce l l  and t h e  E a r t h ' s  atmosphere. A dimer of oxygen [O2I2 has  been 
pos tu la ted  by s e v e r a l  au thors ,  bu t  according to  Krupenie (1972) its presence 
h a s  not  been unequivocally e s t a b l i s h e d .  Bosomworth and Gush (1965) d e s c r i b e  
unusually broad f a r  I R  bands i n  both N, and O2 t h a t  are seen i n  both high 
pressure  gas  and l i q u i d  (Jones, 1970; Buontempo e t  ai., 1975). They are 
a t t r i b u t e d  t o  a coupled t r a n s l a t i o n - r o t a t i o n  mode of t h e  molecule i n t e r a c t i n g  
wi th  a col l is ion-induced d ipole  moment ( l a s t o g i  and Lowndes, 1977). 

They 

Because t h e  oxygen molecule has  an e l e c t r o n  s p i n  and a s s o c i a t e d  magnetlc 
d i p o l e  moment t h a t  is absent  i n  N,, oxygen has  several a d d i t i o n a l  l i n e s  and 
bands. These can b e s t  b e  seen by comparing t h e  gas s p e c t r a  of f i g u r e s  2 and 
3. Since t h e  1ifetio.e of magnetic d i p o l e  t r a n s i t i o n s  is long (-0.01-1 sec),  
they a r e  most o f t e n  apparent i n  gas  where de-exci t ing c o l l i s i o n s  are not  
f requent .  Long s i g h t  pa ths  also he lp  t o  make them apparent.  However, i t  has  
been known f o r  some t i m e  t h a t  t h e  maguetic d i p o l e  e l e c t r o n i c  t r a n s i t i o n s  
i n  t h e  v i s i b l e  and near  I R  are enhanced i n  t h e  s o l i d ,  l i q u i d ,  and high pres-  
s u r e  gas  (Akimoto and P i t t s ,  1970). Bl ickensder fer  and Ewing (1969a, 1969b) 
have shown t h a t  they are a l s o  enhanced i n  l o w  temperature,  l o w  pressure  gas. 
This enhanced absorp t ion  has  a q u a d r a t i c  dependence on d e n s i t y  and is 
a t t r i b u t e d  t o  col l is ion-induced d i p o l e  moments (Robinson, 1967; Tabisz et aZ., 
1969). Flgure 3 shows t h a t  t h e  f a r  I R  magnetic d i p o l e  r o t a t i o n a l  l i n e s  of t h e  
gas are not present  i n  t h e  s o l i d ,  whi le  t h e  col l is ion-indcced magnetic 
d ipole  e l e c t r o n i c  bands of  t h e  v i s i b l e  are. This occurs  because r o t a t i o n a l  
motions by a w l c c u l e  a r e  l i t e r a l l y  f rozen out  of t h e  s o l i d  while  e l e c t r o n i c  
t r a n s i t i o n s  wi th in  a molecule are not .  Figure 3 c lear ly  shows t h e  g r o s s  
change of t h e  spectrum as one progresses  through t h e  s t a g e s  of condensation 
from gas t o  s o l i d ,  and how t h e  magnon l i n e s  of t h e  l a t t i c e  emerge. a0, 

SUMMARY AND CONCLUSION 

This search  and review of t h e  . terature has  revealed t h e  fol lowing 
poin ts .  
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1. The spectrum of s o l i d  O2 has been thoroughly s tud ied  from 0.33 u m  
t o  2500 pm, w i t h  only a small gap from 1.25 um t o  3 pm omitted.  

2. Only two t r a n s i t i o n s  occur i n  s o l i d  02 t h a t  do n o t  a l s o  occur i n  t h e  
gas and l i q u i d .  These r e s u l t  from pure ly  l a t t i c e  resonance modes. 

3. L a t t i c e  resonance abso rp t ions  i n  0 and N2 (and s h i f t s  i n  02) occur 2 only i n  t h e  a phase of t h e  s o l i d .  

4. The magnon resonance abForpt ion i n  a02 occurs only i n  thick 
(25 mm) samples which have been spe&aZZy annealed. 

5. A mixed c r y s t a l  w i t h  85% O2 and 15% N2 w i l l  condense, bu t  i t  is 
q u i t e  doubt fu l  t h a t  it has  t h e  l a r g e  scale magnetic o rde r ing  necessary  f o r  
a magnon reson.int mode. 

6. Thin f i l m  depos i t i on  (<0.05 mm) of O2 g a s  on 4 K s u r f a c e s  
produces : 

a. No observed abso rp t ion  f e a t u r e s  between 3 pm and 2500 um 

b. A s t r o n g l y  s c a t t e r i n g  p o l y c r y s t a l l i n e  s o l i d .  

It is  t h e r e f o r e  concluded t h a t  s c a t t e r i n g  by a condensed phase of t h e  
n a t u r a l l y  occurr ing  atmosphere near  300 km is a more s e r i o u s  problem than  
absorp t ion  f o r  t h e  cold o p t i c s  of SIRTF. 
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th; \ t  t h e  absorp t ion  spectrum of  t h e  s o l i d  oxygen molecule has  been 
thrlrougnly s tud ied  from v i s i b l e  to  m i l l i m e t e r  wavelengths. 
M e a  appear  i n  t h e  s o l i d  t h a t  do not  a l s o  appear  i n  the  gas  o r  l i q u i d .  
A r.imi.lar r e s u l t  is  implied f o r  t h e  s o l i d  n i t rogen  molecule because i t  
a h . >  is homonuclear. The observed i n f r a r e d  absorp t ion  l i n e s  r e s u l t  from 
l a t t i c e  .nodes of t ie  ci phase of t h e  s o l i d ,  and d isappear  a; t h e  warmer 
temperatures of ,he B ,  y ,  and l i q u i d  phases. They are not  observed 
from p: , lycrys ta l l ine  forms of O,, whi le  s t r o n g  s c a t t e r i n g  is. I t  i s  
concluded t h a t  s c a t t e r i n g  r a t h e r  than absorp t ion  is t h e  p r i n c i p a l  n a t u r a l  
conthminntion problem f o r  cooled i n f r a r e d  te lescopes  i n  low Ear th  o r b i t .  
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